The ergodicity of service systems with an infinite number of servomechanisms
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 561-569
Voir la notice de l'article provenant de la source Math-Net.Ru
Existence, uniqueness, and ergodicity are proved for a stationary distribution for a service system having countably many servomechanisms with input flow rate $\lambda_k$ depending on the number $k$ of servomechanisms occupied, and with arbitrary (identical) distribution of the service time with finite mean $\mu$, under the condition $\mu\varlimsup\limits_{k\to\infty}\frac{\lambda_k}{k+1}1$. For this system we have, in particular, Erlang's formula
$$
p_k(t)\underset{k\to\infty}\longrightarrow p_k=\frac{\lambda_0\dots\lambda_{k-1}\mu^k}{k!}p_0,\quad k=0,1,\dots,\quad p_0^{-1}=\sum_{k=0}^\infty\frac{\lambda_0\dots\lambda_{k-1}\mu^k}{k!},\quad\lambda_{-1}=1.
$$
@article{MZM_1977_22_4_a11,
author = {A. Yu. Veretennikov},
title = {The ergodicity of service systems with an infinite number of servomechanisms},
journal = {Matemati\v{c}eskie zametki},
pages = {561--569},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a11/}
}
A. Yu. Veretennikov. The ergodicity of service systems with an infinite number of servomechanisms. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 561-569. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a11/