Upper bounds of best one-sided approximations of the classes $W^rL_\psi$ in the metric of~$L$
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 257-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lowest upper bound is obtained for best one-sided approximations of classes $W^rL_\psi$ ($r=1,2,\dots$) by trigonometric polynomials and splines of minimum deficiency with equidistant knots, in the metric of space $L$, where $W^rL_\psi=\{f:f(x+2\pi)=f(x)$, $f^{(r-1)}(x)$ is absolutely continuous, $\|f^{(r)}\|_{L_\psi}\le1\}$ and $L_\psi$ is an Orlicz space.
@article{MZM_1977_22_2_a9,
     author = {V. G. Doronin and A. A. Ligun},
     title = {Upper bounds of best one-sided approximations of the classes $W^rL_\psi$ in the metric of~$L$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a9/}
}
TY  - JOUR
AU  - V. G. Doronin
AU  - A. A. Ligun
TI  - Upper bounds of best one-sided approximations of the classes $W^rL_\psi$ in the metric of~$L$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 257
EP  - 268
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a9/
LA  - ru
ID  - MZM_1977_22_2_a9
ER  - 
%0 Journal Article
%A V. G. Doronin
%A A. A. Ligun
%T Upper bounds of best one-sided approximations of the classes $W^rL_\psi$ in the metric of~$L$
%J Matematičeskie zametki
%D 1977
%P 257-268
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a9/
%G ru
%F MZM_1977_22_2_a9
V. G. Doronin; A. A. Ligun. Upper bounds of best one-sided approximations of the classes $W^rL_\psi$ in the metric of~$L$. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a9/