Geometric characterization of $RN$-operators
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 189-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ and $Y$ be Banach spaces and $T\in L(X,Y)$. An operator $T:X\to Y$ is called an $RN$-operator if it transforms every $X$-valued. measure $\overline m$ of bounded variation into a $Y$-valued measure having a derivative with respect to the variation of the measure $\overline m$. The notions of $T$-dentability and $Ts$-dentability of bounded sets in Banach spaces are introduced and in their terms are given conditions equivalent to the condition that $T$ is an $RN$-operator (Theorem 1). It is also proved that the adjoint operator is an $RN$-operator if and only if for every separable subspace $X_0$ of $X$ the set $(T|X_0)^*(Y^*)$ is separable (Theorem 2).
@article{MZM_1977_22_2_a3,
     author = {O. I. Reinov},
     title = {Geometric characterization of $RN$-operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {189--202},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a3/}
}
TY  - JOUR
AU  - O. I. Reinov
TI  - Geometric characterization of $RN$-operators
JO  - Matematičeskie zametki
PY  - 1977
SP  - 189
EP  - 202
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a3/
LA  - ru
ID  - MZM_1977_22_2_a3
ER  - 
%0 Journal Article
%A O. I. Reinov
%T Geometric characterization of $RN$-operators
%J Matematičeskie zametki
%D 1977
%P 189-202
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a3/
%G ru
%F MZM_1977_22_2_a3
O. I. Reinov. Geometric characterization of $RN$-operators. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 189-202. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a3/