Functionally complete groups
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 147-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is called functionally complete if for an arbitrary natural number $n$ every mapping $f:G^n\to G$ can be realized by a «polynomial» in at most $n$ variables over the group $G$. We know that a group $G$ is functionally complete if and only if it is either trivial or a finite simple non-Abelian group [Ref. Zh. Mat. 9A174 (1975)]. In this article the ldquodegreerdquo of a polynomial and the connected notions of $n$-functional completeness, $(n;k_1,\dots,k_n)$-functional completeness, and strong functional completeness are introduced. It is shown that for $n>1$ these notions and the notion of functional completeness are equivalent, and apart from all finite simple non-Abelian groups, only the trivial group and groups of second order are 1-functionally complete.
@article{MZM_1977_22_1_a16,
     author = {V. S. Anashin},
     title = {Functionally complete groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {147--151},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a16/}
}
TY  - JOUR
AU  - V. S. Anashin
TI  - Functionally complete groups
JO  - Matematičeskie zametki
PY  - 1977
SP  - 147
EP  - 151
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a16/
LA  - ru
ID  - MZM_1977_22_1_a16
ER  - 
%0 Journal Article
%A V. S. Anashin
%T Functionally complete groups
%J Matematičeskie zametki
%D 1977
%P 147-151
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a16/
%G ru
%F MZM_1977_22_1_a16
V. S. Anashin. Functionally complete groups. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 147-151. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a16/