Functionally complete groups
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 147-151
Voir la notice de l'article provenant de la source Math-Net.Ru
A group $G$ is called functionally complete if for an arbitrary natural number $n$ every mapping $f:G^n\to G$ can be realized by a «polynomial» in at most $n$ variables over the group $G$. We know that a group $G$ is functionally complete if and only if it is either trivial or a finite simple non-Abelian group [Ref. Zh. Mat. 9A174 (1975)]. In this article the ldquodegreerdquo of a polynomial and the connected notions of $n$-functional completeness, $(n;k_1,\dots,k_n)$-functional completeness, and strong functional completeness are introduced. It is shown that for $n>1$ these notions and the notion of functional completeness are equivalent, and apart from all finite simple non-Abelian groups, only the trivial group and groups of second order are 1-functionally complete.
@article{MZM_1977_22_1_a16,
author = {V. S. Anashin},
title = {Functionally complete groups},
journal = {Matemati\v{c}eskie zametki},
pages = {147--151},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a16/}
}
V. S. Anashin. Functionally complete groups. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 147-151. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a16/