Integral points on strictly convex closed curves
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 799-806.

Voir la notice de l'article provenant de la source Math-Net.Ru

A negative answer is given to Swinnerton–Dyer's question: Is it true that for any $\varepsilon>0$ there exists a positive integer $n$ such that for any planar closed strictly convex $n$-times differentiable curve $\Gamma$, when it is blown up a sufficiently large number $\nu$ of times, the number of integral points on the resultant curve will be less than $\nu^\varepsilon$. An example has been constructed when this number for an infinite number $\nu$ is not less than $\nu^{1/2}$, while $\Gamma$ is infinitely differentiable.
@article{MZM_1977_21_6_a6,
     author = {S. V. Konyagin},
     title = {Integral points on strictly convex closed curves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {799--806},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a6/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Integral points on strictly convex closed curves
JO  - Matematičeskie zametki
PY  - 1977
SP  - 799
EP  - 806
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a6/
LA  - ru
ID  - MZM_1977_21_6_a6
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Integral points on strictly convex closed curves
%J Matematičeskie zametki
%D 1977
%P 799-806
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a6/
%G ru
%F MZM_1977_21_6_a6
S. V. Konyagin. Integral points on strictly convex closed curves. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 799-806. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a6/