On the convergence of double Fourier series of functions from $L_p$, $p>1$
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 777-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a function from $L_p$, $p>1$, satisfies the condition $$ \frac1{t\cdot\tau}\int_0^t\int_0^\tau|f(x+u,y+v)-f(x,y)|\,du\,dv=O\Bigl(\Bigl[\ln\frac1{t^2+\tau^2}\Bigr]^{-2}\Bigr), $$ then the double Fourier series of function $f$, under summation over a rectangle, converges almost everywhere.
@article{MZM_1977_21_6_a4,
     author = {I. L. Bloshanskii},
     title = {On the convergence of double {Fourier} series of functions from $L_p$, $p>1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {777--788},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a4/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - On the convergence of double Fourier series of functions from $L_p$, $p>1$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 777
EP  - 788
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a4/
LA  - ru
ID  - MZM_1977_21_6_a4
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T On the convergence of double Fourier series of functions from $L_p$, $p>1$
%J Matematičeskie zametki
%D 1977
%P 777-788
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a4/
%G ru
%F MZM_1977_21_6_a4
I. L. Bloshanskii. On the convergence of double Fourier series of functions from $L_p$, $p>1$. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 777-788. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a4/