Degenerate differential operators in weighted H\"older spaces
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 759-768
Voir la notice de l'article provenant de la source Math-Net.Ru
A differential operator $\mathscr L$, arising from the differential expression
$$
lv(t)\equiv(-1)^rv^{[n]}(t)+\sum_{k=0}^{n-1}p_k(t)v^{[k]}(t)+Av(t),\quad0\le t\le1
$$
and system of boundary value conditions
$$
P_\nu[v]=\sum_{k=0}^{n_\nu}\alpha_{\nu k}v^{[k]}(1)=0,\quad\nu=1,\dots,\mu,\quad0\le\mu$$
is considered in a Banach space $E$. Here $v^{[k]}(t)=\bigl(\alpha(t)\frac d{dt}\bigr)^kv(t)$, $\alpha(t)$ being continuous for $t\ge0$, $\alpha(t)>0$ for $t>0$ and $\int_0^1\frac{dz}{\alpha(z)}=+\infty$; the operator $A$ is strongly positive in $E$. The estimates, are obtained for $\mathscr L$:
$$
\|A(\mathscr L+\lambda)^{-1}\|_{C_{01}^\alpha([0,1];E)}+\sum_{k=0}^n(1+|\lambda|)^{(n-k)/n}\Bigl\|\frac{d^{[k]}}{dt^k}(\mathscr L+\lambda)^{-1}\Bigr\|_{C_{01}^\alpha([0,1];E)}\le M,
$$
$n$ even, $\lambda$ varying over a half plane.
@article{MZM_1977_21_6_a2,
author = {V. P. Orlov},
title = {Degenerate differential operators in weighted {H\"older} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {759--768},
publisher = {mathdoc},
volume = {21},
number = {6},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a2/}
}
V. P. Orlov. Degenerate differential operators in weighted H\"older spaces. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 759-768. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a2/