Degenerate differential operators in weighted H\"older spaces
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 759-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

A differential operator $\mathscr L$, arising from the differential expression $$ lv(t)\equiv(-1)^rv^{[n]}(t)+\sum_{k=0}^{n-1}p_k(t)v^{[k]}(t)+Av(t),\quad0\le t\le1 $$ and system of boundary value conditions $$ P_\nu[v]=\sum_{k=0}^{n_\nu}\alpha_{\nu k}v^{[k]}(1)=0,\quad\nu=1,\dots,\mu,\quad0\le\mu$$ is considered in a Banach space $E$. Here $v^{[k]}(t)=\bigl(\alpha(t)\frac d{dt}\bigr)^kv(t)$, $\alpha(t)$ being continuous for $t\ge0$, $\alpha(t)>0$ for $t>0$ and $\int_0^1\frac{dz}{\alpha(z)}=+\infty$; the operator $A$ is strongly positive in $E$. The estimates, are obtained for $\mathscr L$: $$ \|A(\mathscr L+\lambda)^{-1}\|_{C_{01}^\alpha([0,1];E)}+\sum_{k=0}^n(1+|\lambda|)^{(n-k)/n}\Bigl\|\frac{d^{[k]}}{dt^k}(\mathscr L+\lambda)^{-1}\Bigr\|_{C_{01}^\alpha([0,1];E)}\le M, $$ $n$ even, $\lambda$ varying over a half plane.
@article{MZM_1977_21_6_a2,
     author = {V. P. Orlov},
     title = {Degenerate differential operators in weighted {H\"older} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--768},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a2/}
}
TY  - JOUR
AU  - V. P. Orlov
TI  - Degenerate differential operators in weighted H\"older spaces
JO  - Matematičeskie zametki
PY  - 1977
SP  - 759
EP  - 768
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a2/
LA  - ru
ID  - MZM_1977_21_6_a2
ER  - 
%0 Journal Article
%A V. P. Orlov
%T Degenerate differential operators in weighted H\"older spaces
%J Matematičeskie zametki
%D 1977
%P 759-768
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a2/
%G ru
%F MZM_1977_21_6_a2
V. P. Orlov. Degenerate differential operators in weighted H\"older spaces. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 759-768. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a2/