Radical formations
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 861-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formation $\mathfrak F$ is called radical (weakly $n$-radical) if it contains every group $G$ which can be represented in the form $G=M_1M_2\dots M_n$, $M_i\triangleleft G$, where the subgroups $M_i$ belong to $\mathfrak F$ (belong to $\mathfrak F$ and have pairwise prime indices). It is proved that a local formation $\mathfrak F$ is radical (weakly $n$-radical, $n\ge2$) if and only if its complete inner local screen $f$ has the following property: $f(p)$ is a radical (a weakly $n$-radical, $n\ge2$) formation for every prime number $p$.
@article{MZM_1977_21_6_a13,
     author = {L. M. Slepova},
     title = {Radical formations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {861--864},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a13/}
}
TY  - JOUR
AU  - L. M. Slepova
TI  - Radical formations
JO  - Matematičeskie zametki
PY  - 1977
SP  - 861
EP  - 864
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a13/
LA  - ru
ID  - MZM_1977_21_6_a13
ER  - 
%0 Journal Article
%A L. M. Slepova
%T Radical formations
%J Matematičeskie zametki
%D 1977
%P 861-864
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a13/
%G ru
%F MZM_1977_21_6_a13
L. M. Slepova. Radical formations. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 861-864. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a13/