Radical formations
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 861-864
Cet article a éte moissonné depuis la source Math-Net.Ru
A formation $\mathfrak F$ is called radical (weakly $n$-radical) if it contains every group $G$ which can be represented in the form $G=M_1M_2\dots M_n$, $M_i\triangleleft G$, where the subgroups $M_i$ belong to $\mathfrak F$ (belong to $\mathfrak F$ and have pairwise prime indices). It is proved that a local formation $\mathfrak F$ is radical (weakly $n$-radical, $n\ge2$) if and only if its complete inner local screen $f$ has the following property: $f(p)$ is a radical (a weakly $n$-radical, $n\ge2$) formation for every prime number $p$.
@article{MZM_1977_21_6_a13,
author = {L. M. Slepova},
title = {Radical formations},
journal = {Matemati\v{c}eskie zametki},
pages = {861--864},
year = {1977},
volume = {21},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a13/}
}
L. M. Slepova. Radical formations. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 861-864. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a13/