Recursively enumerable $bw$-degrees
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 839-846
Voir la notice de l'article provenant de la source Math-Net.Ru
For every nonrecursive recursively enumerable (r.e.) set $A$ are constructed bw-incomparable r.e. sets $B_i$, $i\in N$, such that $B_i{}_{bw}A$ and $B_i\equiv{}_wA$. The existence of an infinite antichain of r.e. $m$-degrees in every nonrecursive r.e. $bw$-degree, and also that of an r.e. set $A$ with the property $A^n$, $n\in N$, is proved.
@article{MZM_1977_21_6_a10,
author = {G. N. Kobzev},
title = {Recursively enumerable $bw$-degrees},
journal = {Matemati\v{c}eskie zametki},
pages = {839--846},
publisher = {mathdoc},
volume = {21},
number = {6},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a10/}
}
G. N. Kobzev. Recursively enumerable $bw$-degrees. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 839-846. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a10/