Recursively enumerable $bw$-degrees
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 839-846.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every nonrecursive recursively enumerable (r.e.) set $A$ are constructed bw-incomparable r.e. sets $B_i$, $i\in N$, such that $B_i{}_{bw}A$ and $B_i\equiv{}_wA$. The existence of an infinite antichain of r.e. $m$-degrees in every nonrecursive r.e. $bw$-degree, and also that of an r.e. set $A$ with the property $A^n$, $n\in N$, is proved.
@article{MZM_1977_21_6_a10,
     author = {G. N. Kobzev},
     title = {Recursively enumerable $bw$-degrees},
     journal = {Matemati\v{c}eskie zametki},
     pages = {839--846},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a10/}
}
TY  - JOUR
AU  - G. N. Kobzev
TI  - Recursively enumerable $bw$-degrees
JO  - Matematičeskie zametki
PY  - 1977
SP  - 839
EP  - 846
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a10/
LA  - ru
ID  - MZM_1977_21_6_a10
ER  - 
%0 Journal Article
%A G. N. Kobzev
%T Recursively enumerable $bw$-degrees
%J Matematičeskie zametki
%D 1977
%P 839-846
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a10/
%G ru
%F MZM_1977_21_6_a10
G. N. Kobzev. Recursively enumerable $bw$-degrees. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 839-846. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a10/