Series of rational fractions with rapidly decreasing coefficients
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 627-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] it was shown that if a function $f(z)$, analytic inside the unit disk, is representable by a series $\sum_{n=1}^\infty\frac{\mathscr A_n}{1-\lambda_nz}$ and if the coefficients $\mathscr A_n$ rapidly tend to zero, then $f(z)$ satisfies some functional equation $M_L(f)=0$. In the present paper the converse problem is solved. It is shown that if $f(z)$ satisfies the equation $M_L(f)=0$, then the expansion coefficients rapidly tend to zero.
@article{MZM_1977_21_5_a5,
     author = {T. A. Leont'eva},
     title = {Series of rational fractions with rapidly decreasing coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {627--639},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a5/}
}
TY  - JOUR
AU  - T. A. Leont'eva
TI  - Series of rational fractions with rapidly decreasing coefficients
JO  - Matematičeskie zametki
PY  - 1977
SP  - 627
EP  - 639
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a5/
LA  - ru
ID  - MZM_1977_21_5_a5
ER  - 
%0 Journal Article
%A T. A. Leont'eva
%T Series of rational fractions with rapidly decreasing coefficients
%J Matematičeskie zametki
%D 1977
%P 627-639
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a5/
%G ru
%F MZM_1977_21_5_a5
T. A. Leont'eva. Series of rational fractions with rapidly decreasing coefficients. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 627-639. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a5/