Series of rational fractions with rapidly decreasing coefficients
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 627-639
Voir la notice de l'article provenant de la source Math-Net.Ru
In [1] it was shown that if a function $f(z)$, analytic inside the unit disk, is representable by a series $\sum_{n=1}^\infty\frac{\mathscr A_n}{1-\lambda_nz}$ and if the coefficients $\mathscr A_n$ rapidly tend to zero, then $f(z)$ satisfies some functional equation $M_L(f)=0$. In the present paper the converse problem is solved. It is shown that if $f(z)$ satisfies the equation $M_L(f)=0$, then the expansion coefficients rapidly tend to zero.
@article{MZM_1977_21_5_a5,
author = {T. A. Leont'eva},
title = {Series of rational fractions with rapidly decreasing coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {627--639},
publisher = {mathdoc},
volume = {21},
number = {5},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a5/}
}
T. A. Leont'eva. Series of rational fractions with rapidly decreasing coefficients. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 627-639. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a5/