The interpolation of $l^r$ sequences by $H^p$ functions
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 503-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sequence space $H^p(Z)=\{\{f(z_k)\}:f\in H^p\}$ is defined for a fixed sequence $Z=\{z_k\}$ of different points of the open unit disk and the Hardy class $H^p$ of analytic functions in the disk. For an arbitrary p $p\in[1,\infty)$ is constructed a point sequence $Z=\{z_k\}$ such that $l^1\subset H^p(Z)$, but $l^r\not\subset H^p(Z)$ for $r>1$. It follows from a well-known result of L. Carleson that the inclusions $l^r\subset H^\infty(Z)$ for all $r\in[1,\infty]$ are equivalent.
@article{MZM_1977_21_4_a6,
     author = {S. V. Shvedenko},
     title = {The interpolation of $l^r$ sequences by $H^p$ functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {503--508},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a6/}
}
TY  - JOUR
AU  - S. V. Shvedenko
TI  - The interpolation of $l^r$ sequences by $H^p$ functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 503
EP  - 508
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a6/
LA  - ru
ID  - MZM_1977_21_4_a6
ER  - 
%0 Journal Article
%A S. V. Shvedenko
%T The interpolation of $l^r$ sequences by $H^p$ functions
%J Matematičeskie zametki
%D 1977
%P 503-508
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a6/
%G ru
%F MZM_1977_21_4_a6
S. V. Shvedenko. The interpolation of $l^r$ sequences by $H^p$ functions. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 503-508. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a6/