Two theorems on boundary properties of minimal surfaces in nonparametric form
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 551-556
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $D$ be a region with rectifiable Jordan boundary $\Gamma$, and let $z=f(x,y)$ be a minimal surface defined over $D$. This paper establishes that: 1) function $z=f(x,y)$ almost everywhere on $\Gamma$ has finite or infinite angular boundary values; 2) if region $D$ is the exterior of a circle then, almost everywhere on boundary $\Gamma$, function $z=f(x,y)$ can be continued by continuity.
@article{MZM_1977_21_4_a12,
author = {V. M. Miklyukov},
title = {Two theorems on boundary properties of minimal surfaces in nonparametric form},
journal = {Matemati\v{c}eskie zametki},
pages = {551--556},
year = {1977},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a12/}
}
V. M. Miklyukov. Two theorems on boundary properties of minimal surfaces in nonparametric form. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 551-556. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a12/