A~property of polarization
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 453-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a real Lie group with the Lie algebra $\mathfrak g$, and let f be a real linear functional on $\mathfrak g$. It is established that if $\operatorname{Ker}f$ does not contain nonzero ideals of the algebra $\mathfrak g$, then the existence of a total positive complex polarization for $f$ implies that the Lie algebra of the stationary subgroup of the functional $f$ in $\mathfrak g$ is reductive.
@article{MZM_1977_21_4_a1,
     author = {A. A. Zaitsev},
     title = {A~property of polarization},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--457},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a1/}
}
TY  - JOUR
AU  - A. A. Zaitsev
TI  - A~property of polarization
JO  - Matematičeskie zametki
PY  - 1977
SP  - 453
EP  - 457
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a1/
LA  - ru
ID  - MZM_1977_21_4_a1
ER  - 
%0 Journal Article
%A A. A. Zaitsev
%T A~property of polarization
%J Matematičeskie zametki
%D 1977
%P 453-457
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a1/
%G ru
%F MZM_1977_21_4_a1
A. A. Zaitsev. A~property of polarization. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 453-457. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a1/