A property of polarization
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 453-457
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a real Lie group with the Lie algebra $\mathfrak g$, and let f be a real linear functional on $\mathfrak g$. It is established that if $\operatorname{Ker}f$ does not contain nonzero ideals of the algebra $\mathfrak g$, then the existence of a total positive complex polarization for $f$ implies that the Lie algebra of the stationary subgroup of the functional $f$ in $\mathfrak g$ is reductive.
@article{MZM_1977_21_4_a1,
author = {A. A. Zaitsev},
title = {A~property of polarization},
journal = {Matemati\v{c}eskie zametki},
pages = {453--457},
year = {1977},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a1/}
}
A. A. Zaitsev. A property of polarization. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 453-457. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a1/