Rational approximations of convex functions
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 355-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following inequalities are shown to hold for the least uniform rational deviations $R_n(f)$ of a function $f(x)$, continuous and convex in the interval $[a,b]$: $$ R_n(f)\le C(\nu)\Omega(f)n^{-1}\overbrace{\ln\dots\ln}^{\nu\text{ times}}n $$ ($\nu$ is an integer, $C(\nu)$ depends only on $\nu$, and $\Omega(f)$ is the total oscillation of $f$); $$ R_n(f)\le C_1(\nu)n^{-1}\overbrace{\ln\dots\ln}^{\nu\text{ times}}n\inf\limits_{(b-a)\varkappa_n\le\lambda}\Bigl\{\omega(\lambda,f)+M(f)n^{-1}\ln\frac{b-a}\lambda\Bigr\} $$ ($\nu$ is an integer, $C_1(\nu)$ depends only on $\nu$, $\varkappa_n=\exp(-n/(500\ln^2n))$), $\omega(\delta,f)$ is the modulus of continuity of $f$, and $M(f)=\max|f(x)|$.
@article{MZM_1977_21_3_a7,
     author = {A. Khatamov},
     title = {Rational approximations of convex functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--370},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a7/}
}
TY  - JOUR
AU  - A. Khatamov
TI  - Rational approximations of convex functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 355
EP  - 370
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a7/
LA  - ru
ID  - MZM_1977_21_3_a7
ER  - 
%0 Journal Article
%A A. Khatamov
%T Rational approximations of convex functions
%J Matematičeskie zametki
%D 1977
%P 355-370
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a7/
%G ru
%F MZM_1977_21_3_a7
A. Khatamov. Rational approximations of convex functions. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a7/