Rational approximations of convex functions
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 355-370
Voir la notice de l'article provenant de la source Math-Net.Ru
The following inequalities are shown to hold for the least uniform rational deviations $R_n(f)$ of a function $f(x)$, continuous and convex in the interval $[a,b]$:
$$
R_n(f)\le C(\nu)\Omega(f)n^{-1}\overbrace{\ln\dots\ln}^{\nu\text{ times}}n
$$
($\nu$ is an integer, $C(\nu)$ depends only on $\nu$, and $\Omega(f)$ is the total oscillation of $f$);
$$
R_n(f)\le C_1(\nu)n^{-1}\overbrace{\ln\dots\ln}^{\nu\text{ times}}n\inf\limits_{(b-a)\varkappa_n\le\lambda}\Bigl\{\omega(\lambda,f)+M(f)n^{-1}\ln\frac{b-a}\lambda\Bigr\}
$$
($\nu$ is an integer, $C_1(\nu)$ depends only on $\nu$, $\varkappa_n=\exp(-n/(500\ln^2n))$), $\omega(\delta,f)$ is the modulus of continuity of $f$, and $M(f)=\max|f(x)|$.
@article{MZM_1977_21_3_a7,
author = {A. Khatamov},
title = {Rational approximations of convex functions},
journal = {Matemati\v{c}eskie zametki},
pages = {355--370},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a7/}
}
A. Khatamov. Rational approximations of convex functions. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a7/