The best one-sided approximation of the classes $W^rH_\omega$
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 313-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we calculate the upper bounds of the best one-sided approximations, by trigonometric polynomials and splines of minimal defect in the metric of the space $L$, of the classes $W^rH_\omega$ ($r=2,4,6,\dots$) of all $2\pi$-periodic functions $f(x)$ that are continuous together with their $r$-th derivative $f^r(x)$ and such that for any points $x'$ and $x''$ we have $|f^r(x')-f^r(x'')|\le\omega(|x'-x''|)$, where $\omega(t)$ is a modulus of continuity that is convex upwards.
@article{MZM_1977_21_3_a3,
     author = {V. G. Doronin and A. A. Ligun},
     title = {The best one-sided approximation of the classes $W^rH_\omega$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {313--327},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a3/}
}
TY  - JOUR
AU  - V. G. Doronin
AU  - A. A. Ligun
TI  - The best one-sided approximation of the classes $W^rH_\omega$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 313
EP  - 327
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a3/
LA  - ru
ID  - MZM_1977_21_3_a3
ER  - 
%0 Journal Article
%A V. G. Doronin
%A A. A. Ligun
%T The best one-sided approximation of the classes $W^rH_\omega$
%J Matematičeskie zametki
%D 1977
%P 313-327
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a3/
%G ru
%F MZM_1977_21_3_a3
V. G. Doronin; A. A. Ligun. The best one-sided approximation of the classes $W^rH_\omega$. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 313-327. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a3/