Algebraic integers with discriminants containing fixed prime divisors
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 289-296
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that any algebraic integer $\alpha$ of degree $n\ge2$ whose discriminant is a product of powers of prescribed primes $p_1,\dots,p_r$ has the form $\alpha=a+\beta p_1^{v_1}\dotsp_r^{v_r}$, where $\alpha,v_1,\dots,v_r$ are rational integers and $\beta$ is an integer whose height does not exceed an effectively defined bound depending $\max(p1,\dots,p_r)$, $r$, and $n$.
@article{MZM_1977_21_3_a0,
author = {L. A. Trelina},
title = {Algebraic integers with discriminants containing fixed prime divisors},
journal = {Matemati\v{c}eskie zametki},
pages = {289--296},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a0/}
}
L. A. Trelina. Algebraic integers with discriminants containing fixed prime divisors. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 289-296. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a0/