On integrals constant on congruent domains
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 183-186
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if a real function of two variables is defined, continuous, and bounded on the whole plane, then it is constant under the condition that its integral on each square of unit area is constant. We point out variants of this theorem. We present an example of a function that is not constant but whose integral on each circle of unit radius is constant. Such a function is $\sin\beta x$, where $P$ is any root of the Bessel function $J_1$.
@article{MZM_1977_21_2_a5,
author = {V. V. Proizvolov},
title = {On integrals constant on congruent domains},
journal = {Matemati\v{c}eskie zametki},
pages = {183--186},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a5/}
}
V. V. Proizvolov. On integrals constant on congruent domains. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 183-186. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a5/