On integrals constant on congruent domains
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 183-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a real function of two variables is defined, continuous, and bounded on the whole plane, then it is constant under the condition that its integral on each square of unit area is constant. We point out variants of this theorem. We present an example of a function that is not constant but whose integral on each circle of unit radius is constant. Such a function is $\sin\beta x$, where $P$ is any root of the Bessel function $J_1$.
@article{MZM_1977_21_2_a5,
     author = {V. V. Proizvolov},
     title = {On integrals constant on congruent domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--186},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a5/}
}
TY  - JOUR
AU  - V. V. Proizvolov
TI  - On integrals constant on congruent domains
JO  - Matematičeskie zametki
PY  - 1977
SP  - 183
EP  - 186
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a5/
LA  - ru
ID  - MZM_1977_21_2_a5
ER  - 
%0 Journal Article
%A V. V. Proizvolov
%T On integrals constant on congruent domains
%J Matematičeskie zametki
%D 1977
%P 183-186
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a5/
%G ru
%F MZM_1977_21_2_a5
V. V. Proizvolov. On integrals constant on congruent domains. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 183-186. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a5/