Two theorems on finite unions of regressive immune sets
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 259-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the set of all natural numbers cannot be represented as the union of a finite number of regressive immune sets. This answers a question of Appel and McLaughlin. Incidentally, we obtain the following two results: 1. If $A_1,\dots,A_n$ are regressive immune sets, then there exists a general recursive function $f$ such that $D_{f(0)},\dots,D_{f(n)},\dots$ is a sequence of pairwise disjoint sets and $$ \forall\,x\ (|D_{f(x)}|\le n+1\{f(x)}\cap\overline{A_1\cup\dots\cup A_n}\ne\varnothing). $$ 2. If $A_1,\dots,A_n$ are regressive and $B$ is an infinite subset of $\bigcup\limits_{i=1}^nA_i$, then there exists an $i$ that $A_i\le{}_eB$.
@article{MZM_1977_21_2_a14,
     author = {E. Z. Dyment},
     title = {Two theorems on finite unions of regressive immune sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {259--269},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a14/}
}
TY  - JOUR
AU  - E. Z. Dyment
TI  - Two theorems on finite unions of regressive immune sets
JO  - Matematičeskie zametki
PY  - 1977
SP  - 259
EP  - 269
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a14/
LA  - ru
ID  - MZM_1977_21_2_a14
ER  - 
%0 Journal Article
%A E. Z. Dyment
%T Two theorems on finite unions of regressive immune sets
%J Matematičeskie zametki
%D 1977
%P 259-269
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a14/
%G ru
%F MZM_1977_21_2_a14
E. Z. Dyment. Two theorems on finite unions of regressive immune sets. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 259-269. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a14/