Two theorems on finite unions of regressive immune sets
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 259-269
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the set of all natural numbers cannot be represented as the union of a finite number of regressive immune sets. This answers a question of Appel and McLaughlin. Incidentally, we obtain the following two results:
1. If $A_1,\dots,A_n$ are regressive immune sets, then there exists a general recursive function $f$ such that $D_{f(0)},\dots,D_{f(n)},\dots$ is a sequence of pairwise disjoint sets and
$$
\forall\,x\ (|D_{f(x)}|\le n+1\{f(x)}\cap\overline{A_1\cup\dots\cup A_n}\ne\varnothing).
$$ 2. If $A_1,\dots,A_n$ are regressive and $B$ is an infinite subset of $\bigcup\limits_{i=1}^nA_i$, then there exists an $i$ that $A_i\le{}_eB$.
@article{MZM_1977_21_2_a14,
author = {E. Z. Dyment},
title = {Two theorems on finite unions of regressive immune sets},
journal = {Matemati\v{c}eskie zametki},
pages = {259--269},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a14/}
}
E. Z. Dyment. Two theorems on finite unions of regressive immune sets. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 259-269. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a14/