Conditions for the self-adjointness of a~quasi-elliptic operator
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 709-716
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following theorem for the operator $L=\sum_{k=1}^n(-1)^{m_k}D_k^{2m_k}+q$ considered in $L_2(R^n)$ (the $m_k$ are natural numbers):
If $q(x)\ge-C\max\limits_k|x_k|^{\frac1{1-1/2m_k}}$ ($C>0$) for sufficiently large $|x|$, then L is a self-adjoint operator.
@article{MZM_1976_20_5_a9,
author = {M. G. Gimadislamov},
title = {Conditions for the self-adjointness of a~quasi-elliptic operator},
journal = {Matemati\v{c}eskie zametki},
pages = {709--716},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a9/}
}
M. G. Gimadislamov. Conditions for the self-adjointness of a~quasi-elliptic operator. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 709-716. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a9/