Conditions for the self-adjointness of a~quasi-elliptic operator
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 709-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following theorem for the operator $L=\sum_{k=1}^n(-1)^{m_k}D_k^{2m_k}+q$ considered in $L_2(R^n)$ (the $m_k$ are natural numbers): If $q(x)\ge-C\max\limits_k|x_k|^{\frac1{1-1/2m_k}}$ ($C>0$) for sufficiently large $|x|$, then L is a self-adjoint operator.
@article{MZM_1976_20_5_a9,
     author = {M. G. Gimadislamov},
     title = {Conditions for the self-adjointness of a~quasi-elliptic operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {709--716},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a9/}
}
TY  - JOUR
AU  - M. G. Gimadislamov
TI  - Conditions for the self-adjointness of a~quasi-elliptic operator
JO  - Matematičeskie zametki
PY  - 1976
SP  - 709
EP  - 716
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a9/
LA  - ru
ID  - MZM_1976_20_5_a9
ER  - 
%0 Journal Article
%A M. G. Gimadislamov
%T Conditions for the self-adjointness of a~quasi-elliptic operator
%J Matematičeskie zametki
%D 1976
%P 709-716
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a9/
%G ru
%F MZM_1976_20_5_a9
M. G. Gimadislamov. Conditions for the self-adjointness of a~quasi-elliptic operator. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 709-716. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a9/