Approximation of a linear system of second-order differential equations
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 693-702
Cet article a éte moissonné depuis la source Math-Net.Ru
In a Hilbert space $H$ we consider the approximation by systems \begin{equation} \frac{d^2u_1}{dt^2}=A_{11}u_1+A_{12}u_2+f_1,\quad\varepsilon\frac{d^2u_2}{dt_2}A_2u_1+A_{22}u_2+f_2,\quad\varepsilon>0,\tag{1} \end{equation} of the semievolutionary system obtained from (1) when $\varepsilon=0$. Under certain conditions on the solutions of the Cauchy problem for system (1) and the existence of a bounded linear operator $A_{22}^{-1}$ we establish the convergence of the solutions $u^\varepsilon$ ($\varepsilon\to0$) to a solution of the corresponding problem for system (1) with $\varepsilon=0$. We also establish the uniform correctness of the Cauchy problem for the above system.
@article{MZM_1976_20_5_a7,
author = {Yu. Ya. Belov},
title = {Approximation of a~linear system of second-order differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {693--702},
year = {1976},
volume = {20},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a7/}
}
Yu. Ya. Belov. Approximation of a linear system of second-order differential equations. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 693-702. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a7/