Tests for the convergence of continued fractions, based on the fundamental system of inequalities
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 665-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have proved that if the partial numerators of the continued fraction $f(c)=\frac11+\frac{c_2}1+\frac{c_3}1+\dots$ are all nonzero and for at least some number $n\ge1$ satisfy the inequalities $$ p_n|1+c_n+c_{n+1}|\ge p_{n-2}p_n|c_n|+|c_{n+1}|\quad(n\ge1,\quad p_{-1}=p_0=c_1=0,\quad p_n\ge0), $$ then $f(c)$ converges in the wide sense if and only if at least one of the series \begin{gather} \sum_{n=1}^\infty|c_3c_5\dots c_{2n-1}/(c_2c_4\dots c_{2n})|, \\ \sum_{n=1}^\infty|c_3c_4\dots c_{2n}/(c_3c_5\dots c_{2n+1})|. \end{gather}
@article{MZM_1976_20_5_a4,
     author = {S. S. Khloponin},
     title = {Tests for the convergence of continued fractions, based on the fundamental system of inequalities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--674},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a4/}
}
TY  - JOUR
AU  - S. S. Khloponin
TI  - Tests for the convergence of continued fractions, based on the fundamental system of inequalities
JO  - Matematičeskie zametki
PY  - 1976
SP  - 665
EP  - 674
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a4/
LA  - ru
ID  - MZM_1976_20_5_a4
ER  - 
%0 Journal Article
%A S. S. Khloponin
%T Tests for the convergence of continued fractions, based on the fundamental system of inequalities
%J Matematičeskie zametki
%D 1976
%P 665-674
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a4/
%G ru
%F MZM_1976_20_5_a4
S. S. Khloponin. Tests for the convergence of continued fractions, based on the fundamental system of inequalities. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 665-674. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a4/