Some stability properties for analytic operator functions
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 511-520
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak G$ be a connected, finite-dimensional, complex analytic manifold; let T(lambda) be an analytic function defined on $\mathfrak G$, whose values are $J$-biexpanding operators on a $J$-space $H$. Let $\mathfrak R(A)$ denote the range of $A$. The following assertions are proved: 1. The lineals $\mathfrak R(\sqrt{T(\lambda)^*JT(\lambda)-J})\equiv\mathfrak R$ and $\mathfrak R(\sqrt{T(\lambda)JT(\lambda)^*-J})\equiv\mathfrak R_*$ do not depend on $\lambda$. 2. For arbitrary $\lambda,\mu\in\mathfrak G$ we have $\mathfrak R(T(\lambda)-T(\mu))\subset\mathfrak R_*$, $\mathfrak R(T(\lambda)^*-T(\mu)^*)\subset\mathfrak R$.
@article{MZM_1976_20_4_a5,
author = {Yu. L. Shmul'yan},
title = {Some stability properties for analytic operator functions},
journal = {Matemati\v{c}eskie zametki},
pages = {511--520},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a5/}
}
Yu. L. Shmul'yan. Some stability properties for analytic operator functions. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 511-520. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a5/