Some stability properties for analytic operator functions
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 511-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak G$ be a connected, finite-dimensional, complex analytic manifold; let T(lambda) be an analytic function defined on $\mathfrak G$, whose values are $J$-biexpanding operators on a $J$-space $H$. Let $\mathfrak R(A)$ denote the range of $A$. The following assertions are proved: 1. The lineals $\mathfrak R(\sqrt{T(\lambda)^*JT(\lambda)-J})\equiv\mathfrak R$ and $\mathfrak R(\sqrt{T(\lambda)JT(\lambda)^*-J})\equiv\mathfrak R_*$ do not depend on $\lambda$. 2. For arbitrary $\lambda,\mu\in\mathfrak G$ we have $\mathfrak R(T(\lambda)-T(\mu))\subset\mathfrak R_*$, $\mathfrak R(T(\lambda)^*-T(\mu)^*)\subset\mathfrak R$.
@article{MZM_1976_20_4_a5,
     author = {Yu. L. Shmul'yan},
     title = {Some stability properties for analytic operator functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--520},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a5/}
}
TY  - JOUR
AU  - Yu. L. Shmul'yan
TI  - Some stability properties for analytic operator functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 511
EP  - 520
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a5/
LA  - ru
ID  - MZM_1976_20_4_a5
ER  - 
%0 Journal Article
%A Yu. L. Shmul'yan
%T Some stability properties for analytic operator functions
%J Matematičeskie zametki
%D 1976
%P 511-520
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a5/
%G ru
%F MZM_1976_20_4_a5
Yu. L. Shmul'yan. Some stability properties for analytic operator functions. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 511-520. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a5/