The spectrum of an elliptic operator of second order
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 351-358
Voir la notice de l'article provenant de la source Math-Net.Ru
Under minimal requirements on the coefficients and the boundary of the domain it is proved that the spectrum of the first boundary-value problem for an elliptic operator of second order always lies in the half-plane $\lambda'\le\operatorname{Re}\lambda$, where $\lambda'$ is the leading eigenvalue to which there corresponds a nonnegative eigenfunction. On the line $\operatorname{Re}\lambda=\lambda'$, there are no other points of the spectrum.
@article{MZM_1976_20_3_a5,
author = {T. M. Kerimov and V. A. Kondrat'ev},
title = {The spectrum of an elliptic operator of second order},
journal = {Matemati\v{c}eskie zametki},
pages = {351--358},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a5/}
}
T. M. Kerimov; V. A. Kondrat'ev. The spectrum of an elliptic operator of second order. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 351-358. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a5/