Lagrange interpolation polynomials and orthogonal Fourier–Jacobi series
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 215-226
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\alpha>-1$ and $\beta>-1$. Then a function $f(x)$, continuous on the segment $[-1; 1]$, exists such that the sequence of Lagrange interpolation polynomials constructed from the roots of Jacobi polynomials diverges almost everywhere on $[-1; 1]$, and, at the same time, the Fourier–Jacobi series of function $f(x)$ converges uniformly to $f(x)$ on any segment $[a; b]\subset(-1; 1)$.
@article{MZM_1976_20_2_a6,
author = {A. A. Privalov},
title = {Lagrange interpolation polynomials and orthogonal {Fourier{\textendash}Jacobi} series},
journal = {Matemati\v{c}eskie zametki},
pages = {215--226},
year = {1976},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a6/}
}
A. A. Privalov. Lagrange interpolation polynomials and orthogonal Fourier–Jacobi series. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a6/