Exactness of a nontrivial estimate in a cyclic inequality
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 203-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the inequality [1] $$ \frac1n\sum_{i=1}^n\frac{\nu_1a_{i+1}+\nu_2a_{i+2}+\nu_3a_{i+3}}{\delta_2a_{i+2}+\delta_3a_{i+3}}\geqslant\psi(0), $$ where $n\geqslant3$, $\nu_1, \nu_2, \nu_3\geqslant0$, $\delta_2, \delta_3>0$, and $\psi(t)$ is the convex lower support of the function $\widetilde{\psi}(t)$ defined in [1], is exact.
@article{MZM_1976_20_2_a4,
     author = {E. K. Godunova and V. I. Levin},
     title = {Exactness of a nontrivial estimate in a cyclic inequality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {203--205},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a4/}
}
TY  - JOUR
AU  - E. K. Godunova
AU  - V. I. Levin
TI  - Exactness of a nontrivial estimate in a cyclic inequality
JO  - Matematičeskie zametki
PY  - 1976
SP  - 203
EP  - 205
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a4/
LA  - ru
ID  - MZM_1976_20_2_a4
ER  - 
%0 Journal Article
%A E. K. Godunova
%A V. I. Levin
%T Exactness of a nontrivial estimate in a cyclic inequality
%J Matematičeskie zametki
%D 1976
%P 203-205
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a4/
%G ru
%F MZM_1976_20_2_a4
E. K. Godunova; V. I. Levin. Exactness of a nontrivial estimate in a cyclic inequality. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 203-205. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a4/