Exactness of a nontrivial estimate in a cyclic inequality
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 203-205
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the inequality [1] $$ \frac1n\sum_{i=1}^n\frac{\nu_1a_{i+1}+\nu_2a_{i+2}+\nu_3a_{i+3}}{\delta_2a_{i+2}+\delta_3a_{i+3}}\geqslant\psi(0), $$ where $n\geqslant3$, $\nu_1, \nu_2, \nu_3\geqslant0$, $\delta_2, \delta_3>0$, and $\psi(t)$ is the convex lower support of the function $\widetilde{\psi}(t)$ defined in [1], is exact.
@article{MZM_1976_20_2_a4,
author = {E. K. Godunova and V. I. Levin},
title = {Exactness of a nontrivial estimate in a cyclic inequality},
journal = {Matemati\v{c}eskie zametki},
pages = {203--205},
year = {1976},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a4/}
}
E. K. Godunova; V. I. Levin. Exactness of a nontrivial estimate in a cyclic inequality. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 203-205. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a4/