The Berry--Esseen inequality for the distribution of the least square estimate
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 293-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear regression model $x_t=g_t(\theta_0)+\varepsilon_t$, $t\geqslant1$, is considered. Under a number of conditions on its elements $\varepsilon_t$ and $g_t(\theta_0)$ it is proved that the distribution of the normalized least square estimate of the parameter $\theta_0$ converges uniformly on the real axis to the standard normal law at least as quickly as a quantity of the order $T^{-1/2}$ as $T\to\infty$, where $T$ is the size of the sample, by which the estimate is formed.
@article{MZM_1976_20_2_a14,
     author = {A. V. Ivanov},
     title = {The {Berry--Esseen} inequality for the distribution of the least square estimate},
     journal = {Matemati\v{c}eskie zametki},
     pages = {293--303},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a14/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - The Berry--Esseen inequality for the distribution of the least square estimate
JO  - Matematičeskie zametki
PY  - 1976
SP  - 293
EP  - 303
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a14/
LA  - ru
ID  - MZM_1976_20_2_a14
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T The Berry--Esseen inequality for the distribution of the least square estimate
%J Matematičeskie zametki
%D 1976
%P 293-303
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a14/
%G ru
%F MZM_1976_20_2_a14
A. V. Ivanov. The Berry--Esseen inequality for the distribution of the least square estimate. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 293-303. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a14/