Finite groups with Frobenius subgroup
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 177-186
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose the normalizer $N$ of a subgroup $A$ of a simple group $G$ is a Frobenius group with kernel $A$, and the intersection of $A$ with any other conjugate subgroup of $G$ is trivial, and suppose, if $A$ is elementary Abelian, that $|A|>2n+1$, where $n=|N:A|$. It is proved that if $A$ has a complement $B$ in $G$, then $G$ acts doubly transitively on the set of right cosets of $G$ modulo $B$, the subgroup $B$ is maximal in $G$, and $|B|$ is divisible by $|A|-1$. The proof makes essential use of the coherence of a certain set of irreducible characters of $N$.
@article{MZM_1976_20_2_a1,
author = {A. V. Romanovskii},
title = {Finite groups with {Frobenius} subgroup},
journal = {Matemati\v{c}eskie zametki},
pages = {177--186},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a1/}
}
A. V. Romanovskii. Finite groups with Frobenius subgroup. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a1/