Finite groups with Frobenius subgroup
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 177-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose the normalizer $N$ of a subgroup $A$ of a simple group $G$ is a Frobenius group with kernel $A$, and the intersection of $A$ with any other conjugate subgroup of $G$ is trivial, and suppose, if $A$ is elementary Abelian, that $|A|>2n+1$, where $n=|N:A|$. It is proved that if $A$ has a complement $B$ in $G$, then $G$ acts doubly transitively on the set of right cosets of $G$ modulo $B$, the subgroup $B$ is maximal in $G$, and $|B|$ is divisible by $|A|-1$. The proof makes essential use of the coherence of a certain set of irreducible characters of $N$.
@article{MZM_1976_20_2_a1,
     author = {A. V. Romanovskii},
     title = {Finite groups with {Frobenius} subgroup},
     journal = {Matemati\v{c}eskie zametki},
     pages = {177--186},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a1/}
}
TY  - JOUR
AU  - A. V. Romanovskii
TI  - Finite groups with Frobenius subgroup
JO  - Matematičeskie zametki
PY  - 1976
SP  - 177
EP  - 186
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a1/
LA  - ru
ID  - MZM_1976_20_2_a1
ER  - 
%0 Journal Article
%A A. V. Romanovskii
%T Finite groups with Frobenius subgroup
%J Matematičeskie zametki
%D 1976
%P 177-186
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a1/
%G ru
%F MZM_1976_20_2_a1
A. V. Romanovskii. Finite groups with Frobenius subgroup. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a1/