Equivalent conditions for representing analytic functions by exponential series
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 91-104
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L(\lambda)$ be an entire function of exponential type with simple zeros $\lambda_1, \lambda_2,\dots$; let $\overline D$ be the smallest closed convex set which contains all of the singularities of the function which is associated with $L(\lambda)$ in the sense of Borel. In [1] there are necessary and sufficient conditions on $L(\lambda)$ under which a function $f(z)$ which is analytic in $\overline D$ can be represented in $D$ by a Dirichlet series with exponents $\lambda_1, \lambda_2,\dots$ We obtain new equivalent conditions on $L(\lambda)$.
@article{MZM_1976_20_1_a9,
author = {A. F. Leont'ev},
title = {Equivalent conditions for representing analytic functions by exponential series},
journal = {Matemati\v{c}eskie zametki},
pages = {91--104},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a9/}
}
A. F. Leont'ev. Equivalent conditions for representing analytic functions by exponential series. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 91-104. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a9/