Multiple rational trigonometric sums and multiple integrals
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an estimate of the modulus of a complete multiple rational trigonometric sum: $$ \biggl|\sum_{x_1,\dots,x_r=1}^q\exp(2\pi if(x_1,\dots,x_r)/q)\biggr|\ll q^{r-1/n+\varepsilon} $$ where \begin{gather*} f(x_1,\dots,x_r)=\sum\nolimits_{0\le t_1,\dots,t_r\le n^at_1,\dots,t_r}x_1^{t_1}\dots x_r^{t_r}, \\ a_{0,\dots,0}=0,\quad(a_{0,\dots,0,1}\dots,a_{n,\dots,n},q)=1, \end{gather*} and an estimate of the modulus of a multiple trigonometric integral.
@article{MZM_1976_20_1_a6,
     author = {V. N. Chubarikov},
     title = {Multiple rational trigonometric sums and multiple integrals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a6/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - Multiple rational trigonometric sums and multiple integrals
JO  - Matematičeskie zametki
PY  - 1976
SP  - 61
EP  - 68
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a6/
LA  - ru
ID  - MZM_1976_20_1_a6
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T Multiple rational trigonometric sums and multiple integrals
%J Matematičeskie zametki
%D 1976
%P 61-68
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a6/
%G ru
%F MZM_1976_20_1_a6
V. N. Chubarikov. Multiple rational trigonometric sums and multiple integrals. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 61-68. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a6/