The sharpening of the bounds on certain linear forms
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g_1,\dots,g_{m-1}$, $b$, $h_1,\dots,h_m$ be the integers from some imaginary quadratic field, $b\ne0$, $\max|g_i|=g$, $\max|h_j|=H\ne0$, $P_m(x)=x^m+g_{m-1}x^{m-1}+\dots+g_1x$, $P_m(x)\ne0$ for x =$x=1,2,\dots$, $$ \psi(z)=1+\sum_{\nu=1}^\infty\Bigl[\prod_{x=1}^\nu P_m(x)\Bigr]^{-1}z^\nu. $$ Then $$ \Bigl|h_1\psi\Bigl(\frac1b\Bigr)+h_2\psi'\Bigl(\frac1b\Bigr)+\dots+h_m\psi^{(m-1)}\Bigl(\frac1b\Bigr)\Bigr|>CH^{1-m}\Bigl\{\frac{\ln\ln(H+2)}{\ln(H+2)}\Bigr\}^\gamma, $$ where $\gamma=(m-1)^2g-(m-1)\operatorname{Re}g_{m-1}+m(m^2+m-4)/2$, and $C=C(b,m,g)>0$.
@article{MZM_1976_20_1_a4,
     author = {A. I. Galochkin},
     title = {The sharpening of the bounds on certain linear forms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--45},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a4/}
}
TY  - JOUR
AU  - A. I. Galochkin
TI  - The sharpening of the bounds on certain linear forms
JO  - Matematičeskie zametki
PY  - 1976
SP  - 35
EP  - 45
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a4/
LA  - ru
ID  - MZM_1976_20_1_a4
ER  - 
%0 Journal Article
%A A. I. Galochkin
%T The sharpening of the bounds on certain linear forms
%J Matematičeskie zametki
%D 1976
%P 35-45
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a4/
%G ru
%F MZM_1976_20_1_a4
A. I. Galochkin. The sharpening of the bounds on certain linear forms. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 35-45. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a4/