Infinite $p$-groups containing exactly $p^2$ solutions of the equation $x^p=1$
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study arbitrary infinite 2-groups with three involutions and infinite locally finite $p$-groups ($p\ne2$), containing $p^2-1$ elements of order $p$. For odd $p$ the group $G=A\langle b\rangle$, where $A$ is a direct product of two quasicyclic 3-groups $|b|=9$, $b^3\in A$, and subgroup $A$ is generated by the elements of the commutator ladder of element $b$, is a unique infinite non-Abelian locally finite $p$-group whose equation $x^p=1$ has $p^2$ solutions.
@article{MZM_1976_20_1_a1,
     author = {F. N. Liman},
     title = {Infinite $p$-groups containing exactly $p^2$ solutions of the equation $x^p=1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--18},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a1/}
}
TY  - JOUR
AU  - F. N. Liman
TI  - Infinite $p$-groups containing exactly $p^2$ solutions of the equation $x^p=1$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 11
EP  - 18
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a1/
LA  - ru
ID  - MZM_1976_20_1_a1
ER  - 
%0 Journal Article
%A F. N. Liman
%T Infinite $p$-groups containing exactly $p^2$ solutions of the equation $x^p=1$
%J Matematičeskie zametki
%D 1976
%P 11-18
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a1/
%G ru
%F MZM_1976_20_1_a1
F. N. Liman. Infinite $p$-groups containing exactly $p^2$ solutions of the equation $x^p=1$. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 11-18. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a1/