Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 899-911
Cet article a éte moissonné depuis la source Math-Net.Ru
This study concerns the class $A_K^D$ of functions $x$ analytic in a domain $D$ of an open Riemann surface and satisfying there the inequality $|x|<1$ with metric defined by the norm of the space $C(K)$ of functions continuous on the compact subset $K\subset D$. The asymptotic formula $$ \lim_{n\to\infty}[d_n(A_K^D)]^{1/n}=e^{-1/\tau}, $$ is established, where $D$ is a finitely connected domain of Carathéodory type, $K\subset D$ is a regular compact subset such thatdsetmnk is connected, and $\tau=\tau(D,K)$ is the flux of harmonic measure of the set $\partial D$ relative to the $D\setminus K$ through any rectifiable contour separating $\partial D$ and $K$.
@article{MZM_1976_19_6_a9,
author = {V. P. Zakharyuta and N. I. Skiba},
title = {Estimates of $n$-diameters of some classes of functions analytic on {Riemann} surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {899--911},
year = {1976},
volume = {19},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a9/}
}
V. P. Zakharyuta; N. I. Skiba. Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 899-911. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a9/