Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 899-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study concerns the class $A_K^D$ of functions $x$ analytic in a domain $D$ of an open Riemann surface and satisfying there the inequality $|x|1$ with metric defined by the norm of the space $C(K)$ of functions continuous on the compact subset $K\subset D$. The asymptotic formula $$ \lim_{n\to\infty}[d_n(A_K^D)]^{1/n}=e^{-1/\tau}, $$ is established, where $D$ is a finitely connected domain of Carathéodory type, $K\subset D$ is a regular compact subset such thatdsetmnk is connected, and $\tau=\tau(D,K)$ is the flux of harmonic measure of the set $\partial D$ relative to the $D\setminus K$ through any rectifiable contour separating $\partial D$ and $K$.
@article{MZM_1976_19_6_a9,
     author = {V. P. Zakharyuta and N. I. Skiba},
     title = {Estimates of $n$-diameters of some classes of functions analytic on {Riemann} surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {899--911},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a9/}
}
TY  - JOUR
AU  - V. P. Zakharyuta
AU  - N. I. Skiba
TI  - Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces
JO  - Matematičeskie zametki
PY  - 1976
SP  - 899
EP  - 911
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a9/
LA  - ru
ID  - MZM_1976_19_6_a9
ER  - 
%0 Journal Article
%A V. P. Zakharyuta
%A N. I. Skiba
%T Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces
%J Matematičeskie zametki
%D 1976
%P 899-911
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a9/
%G ru
%F MZM_1976_19_6_a9
V. P. Zakharyuta; N. I. Skiba. Estimates of $n$-diameters of some classes of functions analytic on Riemann surfaces. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 899-911. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a9/