Compactness conditions for groups of automorphisms of topological groups
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 735-743.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $G$ is a compact, totally disconnected Abelian group and $\operatorname{Aut}G$ is its group of topological automorphisms (with the natural topology), then the following conditions are equivalent: (a) $\operatorname{Aut}G$ is compact; (b) $\operatorname{Aut}G$ is locally compact; (c) $\operatorname{Aut}G$ has small invariant neighborhoods of the identity; (d) $\operatorname{Aut}G$ is an $\overline{FC}$-group; (e) the factor group of $\operatorname{Aut}G$ by its center is compact; (f) the closure of the commutator subgroup of $\operatorname{Aut}G$ is compact; (g) $G\cong\Pi_p(F_p\oplus\Pi_{i=1}^{n_p}Z_p)$, where $F_p$ is a finite $p$-group, $Z_p$ is the additive group of $p$-adic integers, and $n_p\infty$.
@article{MZM_1976_19_5_a8,
     author = {O. V. Mel'nikov},
     title = {Compactness conditions for groups of automorphisms of topological groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {735--743},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a8/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Compactness conditions for groups of automorphisms of topological groups
JO  - Matematičeskie zametki
PY  - 1976
SP  - 735
EP  - 743
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a8/
LA  - ru
ID  - MZM_1976_19_5_a8
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Compactness conditions for groups of automorphisms of topological groups
%J Matematičeskie zametki
%D 1976
%P 735-743
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a8/
%G ru
%F MZM_1976_19_5_a8
O. V. Mel'nikov. Compactness conditions for groups of automorphisms of topological groups. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 735-743. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a8/