Approximation of Dirichlet polynomials in cases of sparse exponents
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 691-698.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $0\lambda_k\uparrow\infty$, $\sum_{k=1}^\infty\lambda_k^{-1}\infty$, and let $\gamma$ be an analytic arc. For the Dirichlet polynomial $P(z)=\sum_1^na_ke^\lambda k^z$, in angle $E-\pi/2+\varphi_0\arg[-(z-a)]\pi/2-\varphi_0$, $0\varphi\pi/2$, $\operatorname{Re}\alpha\beta=\max\limits_{t\in\gamma}\operatorname{Re}t$ we obtain the estimate $$ |P(z)|\max_{t\in\gamma}|P(t)|, $$ where $A$ depends only on angle $E$ $\{\lambda_k\}$. When $\gamma$ is a segment, an estimate was obtained by L. Schwartz.
@article{MZM_1976_19_5_a3,
     author = {Z. Sh. Karimov},
     title = {Approximation of {Dirichlet} polynomials in cases of sparse exponents},
     journal = {Matemati\v{c}eskie zametki},
     pages = {691--698},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a3/}
}
TY  - JOUR
AU  - Z. Sh. Karimov
TI  - Approximation of Dirichlet polynomials in cases of sparse exponents
JO  - Matematičeskie zametki
PY  - 1976
SP  - 691
EP  - 698
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a3/
LA  - ru
ID  - MZM_1976_19_5_a3
ER  - 
%0 Journal Article
%A Z. Sh. Karimov
%T Approximation of Dirichlet polynomials in cases of sparse exponents
%J Matematičeskie zametki
%D 1976
%P 691-698
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a3/
%G ru
%F MZM_1976_19_5_a3
Z. Sh. Karimov. Approximation of Dirichlet polynomials in cases of sparse exponents. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 691-698. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a3/