Approximation of Dirichlet polynomials in cases of sparse exponents
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 691-698
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $0<\lambda_k\uparrow\infty$, $\sum_{k=1}^\infty\lambda_k^{-1}<\infty$, and let $\gamma$ be an analytic arc. For the Dirichlet polynomial $P(z)=\sum_1^na_ke^\lambda k^z$, in angle $E-\pi/2+\varphi_0<\arg[-(z-a)]<\pi/2-\varphi_0$, $0<\varphi<\pi/2$, $\operatorname{Re}\alpha<\beta=\max\limits_{t\in\gamma}\operatorname{Re}t$ we obtain the estimate $$ |P(z)|<A\max_{t\in\gamma}|P(t)|, $$ where $A$ depends only on angle $E$ $\{\lambda_k\}$. When $\gamma$ is a segment, an estimate was obtained by L. Schwartz.
@article{MZM_1976_19_5_a3,
author = {Z. Sh. Karimov},
title = {Approximation of {Dirichlet} polynomials in cases of sparse exponents},
journal = {Matemati\v{c}eskie zametki},
pages = {691--698},
year = {1976},
volume = {19},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a3/}
}
Z. Sh. Karimov. Approximation of Dirichlet polynomials in cases of sparse exponents. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 691-698. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a3/