The existence of some resolvable block designs with divisibility into groups
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 623-634
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper proves the existence of resolvable block designs with divisibility into groups $GD(v;k,m;\lambda_1,\lambda_2)$ without repeated blocks and with arbitrary parameters such that $\lambda_1=k$, $(v-1)/(k-1)\le\lambda_2\le v^{k-2}$ (and also $\lambda_1\le k/2$), $(v-1)/(2(k-1))\le\lambda_2\le v^{k-2}$ in case $k$ is even) $k\ge4$ and $p\equiv1\pmod{k-1}$, $k$ for each prime divisor $p$ of number $v$. As a corollary, the existence of a resolvable $BIB$-design $(v,k,\lambda)$ without repeated blocks is deduced with $\lambda=k$ (and also with $\lambda=k/2$ in case of even $k$) $k>\sqrt{p}v=pk^\alpha$ , where $\alpha$ is a natural number if $k$ is a prime power $\alpha=1$ if $k$ is a composite number.
@article{MZM_1976_19_4_a16,
author = {B. T. Rumov},
title = {The existence of some resolvable block designs with divisibility into groups},
journal = {Matemati\v{c}eskie zametki},
pages = {623--634},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a16/}
}
B. T. Rumov. The existence of some resolvable block designs with divisibility into groups. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 623-634. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a16/