The summability of a special series by the $(C,\alpha)$ method
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 481-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study the problem of the summability by the $(C,\alpha)$ method of the special series $$ f(x)\sim\sum_{n=-\infty}^{n=+\infty}c_n(x)\exp(in\mu(x)),\eqno(*) $$ where \begin{gather*} c_n(x)=\frac2\pi\int_Gf(t)\exp(-in\mu(t))\frac{\sin1/2[\mu(t)-\mu(x)]}{t-x}\,dt, \\ \mu(x)=\frac1\pi\int_E\frac{dt}{t-x}. \end{gather*} $E$ is some compactum on the real axis $R$ with positive Lebesgue measure and $G$ is the complement of $E$ with respect to $R$. It is shown that if the function $|f(t)|(1+|t|)^{-1}$ is integrable on $G$, then the series (*) is $(C,\alpha)$ summable at each Lebesgue point of the considered function $f$ and for any $\alpha>0$ coincides almost everywhere with $f(x)$.
@article{MZM_1976_19_4_a0,
     author = {S. S. Agayan},
     title = {The summability of a special series by the $(C,\alpha)$ method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {481--490},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a0/}
}
TY  - JOUR
AU  - S. S. Agayan
TI  - The summability of a special series by the $(C,\alpha)$ method
JO  - Matematičeskie zametki
PY  - 1976
SP  - 481
EP  - 490
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a0/
LA  - ru
ID  - MZM_1976_19_4_a0
ER  - 
%0 Journal Article
%A S. S. Agayan
%T The summability of a special series by the $(C,\alpha)$ method
%J Matematičeskie zametki
%D 1976
%P 481-490
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a0/
%G ru
%F MZM_1976_19_4_a0
S. S. Agayan. The summability of a special series by the $(C,\alpha)$ method. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 481-490. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a0/