Groups of automorphisms of finite $p$-groups
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 401-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

Thompson [1] showed that if $p$ is an odd prime number, $A$ is a $p$-group of operators of the finite group $P$ in which the Frattini subgroup $\Phi(P)$ is elementary and central, and $P/\Phi(P)$ is a free $Z_pA$-module, then $C_P(A)$ covers $C_{P/\Phi(P)}(A)$. Then he proposed the question of whether it is possible in this theorem to weaken the hypothesis that $\Phi(P)$ be elementary and central. In the work it is shown that this hypothesis may be replaced by a much weaker one; it is sufficient that P be met-Abelian and have nilpotence class prime-subgroups of Sylowizers of a $p$-subgroup of a solvable group [2].
@article{MZM_1976_19_3_a9,
     author = {A. V. Borovik and E. I. Khukhro},
     title = {Groups of automorphisms of finite $p$-groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {401--418},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a9/}
}
TY  - JOUR
AU  - A. V. Borovik
AU  - E. I. Khukhro
TI  - Groups of automorphisms of finite $p$-groups
JO  - Matematičeskie zametki
PY  - 1976
SP  - 401
EP  - 418
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a9/
LA  - ru
ID  - MZM_1976_19_3_a9
ER  - 
%0 Journal Article
%A A. V. Borovik
%A E. I. Khukhro
%T Groups of automorphisms of finite $p$-groups
%J Matematičeskie zametki
%D 1976
%P 401-418
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a9/
%G ru
%F MZM_1976_19_3_a9
A. V. Borovik; E. I. Khukhro. Groups of automorphisms of finite $p$-groups. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 401-418. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a9/