Direct and inverse inequalities for $\varphi$-Fej\'er mean-square approximations
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 353-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider approximation of a function $f\in W_2^l(R_1)$, $l\ge0$, by linear operators of the form $$ K_\sigma^\varphi(f;x)=\frac1{\sqrt{2\pi}}\int_{R_1}\varphi\Bigl(\frac u\sigma\Bigr)\widetilde f(u)e^{iux}\,du,\quad \sigma>0. $$ We elucidate the conditions for the existence of direct and inverse inequalities between the quantities $\|f-K_\sigma^\varphi(f)\|_{L_2}$ and $\omega_k(f;\tau/\sigma)_{L_2}$, viz., the $k$-th integral modulus of continuity of the function $f(x)$, $k=1,2,\dots,$. Under some restrictions on $\varphi(u)$, $u\in R_1$ the exact constants in these inequalities are found.
@article{MZM_1976_19_3_a4,
     author = {V. Yu. Popov},
     title = {Direct and inverse inequalities for $\varphi${-Fej\'er} mean-square approximations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {353--364},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a4/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - Direct and inverse inequalities for $\varphi$-Fej\'er mean-square approximations
JO  - Matematičeskie zametki
PY  - 1976
SP  - 353
EP  - 364
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a4/
LA  - ru
ID  - MZM_1976_19_3_a4
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T Direct and inverse inequalities for $\varphi$-Fej\'er mean-square approximations
%J Matematičeskie zametki
%D 1976
%P 353-364
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a4/
%G ru
%F MZM_1976_19_3_a4
V. Yu. Popov. Direct and inverse inequalities for $\varphi$-Fej\'er mean-square approximations. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 353-364. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a4/