Direct and inverse inequalities for $\varphi$-Fej\'er mean-square approximations
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 353-364
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider approximation of a function $f\in W_2^l(R_1)$, $l\ge0$, by linear operators of the form
$$
K_\sigma^\varphi(f;x)=\frac1{\sqrt{2\pi}}\int_{R_1}\varphi\Bigl(\frac u\sigma\Bigr)\widetilde f(u)e^{iux}\,du,\quad \sigma>0.
$$
We elucidate the conditions for the existence of direct and inverse inequalities between the quantities $\|f-K_\sigma^\varphi(f)\|_{L_2}$ and $\omega_k(f;\tau/\sigma)_{L_2}$, viz., the $k$-th integral modulus of continuity of the function $f(x)$, $k=1,2,\dots,$. Under some restrictions on $\varphi(u)$, $u\in R_1$ the exact constants in these inequalities are found.
@article{MZM_1976_19_3_a4,
author = {V. Yu. Popov},
title = {Direct and inverse inequalities for $\varphi${-Fej\'er} mean-square approximations},
journal = {Matemati\v{c}eskie zametki},
pages = {353--364},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a4/}
}
V. Yu. Popov. Direct and inverse inequalities for $\varphi$-Fej\'er mean-square approximations. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 353-364. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a4/