A~group of transformations connected with the Markov cubic surface
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 419-428.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V$ be the surface given by the equations \begin{gather*} x_1^2+x_2^2+x_3^2=3x_1x_2x_3; \\ x_1>0,x_2>0,x_3>0. \end{gather*} Let $V(R)$ and $V(Z)$ be its real and integral points respectively, and $G$ the group of transformations generated by $t_1$,$t_2$,$t_3$, where \begin{gather*} t_1(x_1,x_2,x_3)=(3x_2x_3-x_1,x_2,x_3) \\ t_2(x_1,x_2,x_3)=(x_1,3x_1x_3-x_2,x_3) \\ t_3(x_1,x_2,x_3)=(x_1,x_2,3x_1x_2-x_3) \end{gather*} It is shown in this paper that $G$ acts freely on $V(Z)$. On $V(R)$, $G$ acts discretely; we construct a fundamental domain, and describe the fixed points.
@article{MZM_1976_19_3_a10,
     author = {V. V. Ermakov},
     title = {A~group of transformations connected with the {Markov} cubic surface},
     journal = {Matemati\v{c}eskie zametki},
     pages = {419--428},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a10/}
}
TY  - JOUR
AU  - V. V. Ermakov
TI  - A~group of transformations connected with the Markov cubic surface
JO  - Matematičeskie zametki
PY  - 1976
SP  - 419
EP  - 428
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a10/
LA  - ru
ID  - MZM_1976_19_3_a10
ER  - 
%0 Journal Article
%A V. V. Ermakov
%T A~group of transformations connected with the Markov cubic surface
%J Matematičeskie zametki
%D 1976
%P 419-428
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a10/
%G ru
%F MZM_1976_19_3_a10
V. V. Ermakov. A~group of transformations connected with the Markov cubic surface. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 419-428. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a10/