A group of transformations connected with the Markov cubic surface
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 419-428
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $V$ be the surface given by the equations \begin{gather*} x_1^2+x_2^2+x_3^2=3x_1x_2x_3; \\ x_1>0,x_2>0,x_3>0. \end{gather*} Let $V(R)$ and $V(Z)$ be its real and integral points respectively, and $G$ the group of transformations generated by $t_1$,$t_2$,$t_3$, where \begin{gather*} t_1(x_1,x_2,x_3)=(3x_2x_3-x_1,x_2,x_3) \\ t_2(x_1,x_2,x_3)=(x_1,3x_1x_3-x_2,x_3) \\ t_3(x_1,x_2,x_3)=(x_1,x_2,3x_1x_2-x_3) \end{gather*} It is shown in this paper that $G$ acts freely on $V(Z)$. On $V(R)$, $G$ acts discretely; we construct a fundamental domain, and describe the fixed points.
@article{MZM_1976_19_3_a10,
author = {V. V. Ermakov},
title = {A~group of transformations connected with the {Markov} cubic surface},
journal = {Matemati\v{c}eskie zametki},
pages = {419--428},
year = {1976},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a10/}
}
V. V. Ermakov. A group of transformations connected with the Markov cubic surface. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 419-428. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a10/