Canonical decomposition of projective and affine killing vectors on the tangent bundle
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 247-258
Voir la notice de l'article provenant de la source Math-Net.Ru
For an affine connection on the tangent bundle $T(M)$ obtained by lifting an affine connection on $M$, the structure of vector fields on $T(M)$ which generate local one-parameter groups of projective and affine collineations is described. On the $T(M)$ of a complete irreducible Riemann manifold, every projective collineation is affine. On the $T(M)$ of a projectively Euclidean space, every affine collineation preserves the fibration of $T(M)$, and on the $T(M)$ of a projectively non-Euclidean space which is maximally homogeneous (in the sense of affine collineations) there exist affine collineations permuting the fibers of $T(M)$.
@article{MZM_1976_19_2_a9,
author = {F. I. Kagan},
title = {Canonical decomposition of projective and affine killing vectors on the tangent bundle},
journal = {Matemati\v{c}eskie zametki},
pages = {247--258},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a9/}
}
F. I. Kagan. Canonical decomposition of projective and affine killing vectors on the tangent bundle. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 247-258. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a9/