Defining a~metric in a~linear space by means of a~family of subsets
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 237-246
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are given on a family $\{A_r\}_{r>0}$ of subsets of a real linear space $X$ under which $\inf\{r>0:x\in A_r\}$ is a quasinorm [1] on X. It is shown that for any symmetric (about zero) closed set $A$ in a normed space $X$ containing the ball $\{x\in X:\|x\|\le1\}$ there exists a quasinorm $|\cdot|$ on $X$ such that $A=\{x\in X:\|x\|\le1\}$. Examples are constructed of linear metric spaces in which there exists a Chebyshev line which is not an approximately compact set.
@article{MZM_1976_19_2_a8,
author = {A. I. Vasil'ev},
title = {Defining a~metric in a~linear space by means of a~family of subsets},
journal = {Matemati\v{c}eskie zametki},
pages = {237--246},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a8/}
}
A. I. Vasil'ev. Defining a~metric in a~linear space by means of a~family of subsets. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a8/