The Kleinfeld identities in generalized accessible rings
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 291-297
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the identities $([x,y]^4,z,t)=([x,y]^2,z,t)[x,y]=[x,y]([x,y]^2,z,t)=0$, known in the theory of alternative rings as the Kleinfeld identities, are fulfilled in every generalized accessible ring of characteristic different from 2 and 3. These identities allow us to construct central and kernel functions in the variety of generalized accessible rings. It is also proved that in a free generalized accessible and a free alternative ring with more than three generators the Kleinfeld element $([x,y]^2,z,t)$ is nilpotent of index 2.
@article{MZM_1976_19_2_a13,
author = {G. V. Dorofeev},
title = {The {Kleinfeld} identities in generalized accessible rings},
journal = {Matemati\v{c}eskie zametki},
pages = {291--297},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a13/}
}
G. V. Dorofeev. The Kleinfeld identities in generalized accessible rings. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a13/