The Kleinfeld identities in generalized accessible rings
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 291-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the identities $([x,y]^4,z,t)=([x,y]^2,z,t)[x,y]=[x,y]([x,y]^2,z,t)=0$, known in the theory of alternative rings as the Kleinfeld identities, are fulfilled in every generalized accessible ring of characteristic different from 2 and 3. These identities allow us to construct central and kernel functions in the variety of generalized accessible rings. It is also proved that in a free generalized accessible and a free alternative ring with more than three generators the Kleinfeld element $([x,y]^2,z,t)$ is nilpotent of index 2.
@article{MZM_1976_19_2_a13,
     author = {G. V. Dorofeev},
     title = {The {Kleinfeld} identities in generalized accessible rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {291--297},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a13/}
}
TY  - JOUR
AU  - G. V. Dorofeev
TI  - The Kleinfeld identities in generalized accessible rings
JO  - Matematičeskie zametki
PY  - 1976
SP  - 291
EP  - 297
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a13/
LA  - ru
ID  - MZM_1976_19_2_a13
ER  - 
%0 Journal Article
%A G. V. Dorofeev
%T The Kleinfeld identities in generalized accessible rings
%J Matematičeskie zametki
%D 1976
%P 291-297
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a13/
%G ru
%F MZM_1976_19_2_a13
G. V. Dorofeev. The Kleinfeld identities in generalized accessible rings. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a13/