Linearly ordered groups whose system of convex subgroups is central
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The order $P$ on a group $G$ is called rigid if for $p\in P$ the relation $p|[x,p]|^\varepsilon\in P$ holds for every $x\in G$, $\varepsilon=\pm1$ In this note we give criteria for the existence of a rigid linear order, for the extendability of a rigid partial order to a rigid linear order, and for the extendability of each rigid partial order to a rigid linear order on a group. It is proved that the class of groups each of whose rigid partial orders can be extended to a rigid linear order is closed with respect to direct products. A new proof of the theorem of M. I. Kargapolov which states that if a group $G$ can be approximated by finite $p$-groups for infinite number of primes $p$, then it has a central system of subgroups with torsion-free factors is presented.
@article{MZM_1976_19_1_a8,
     author = {V. M. Kopytov and N. Ya. Medvedev},
     title = {Linearly ordered groups whose system of convex subgroups is central},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a8/}
}
TY  - JOUR
AU  - V. M. Kopytov
AU  - N. Ya. Medvedev
TI  - Linearly ordered groups whose system of convex subgroups is central
JO  - Matematičeskie zametki
PY  - 1976
SP  - 85
EP  - 90
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a8/
LA  - ru
ID  - MZM_1976_19_1_a8
ER  - 
%0 Journal Article
%A V. M. Kopytov
%A N. Ya. Medvedev
%T Linearly ordered groups whose system of convex subgroups is central
%J Matematičeskie zametki
%D 1976
%P 85-90
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a8/
%G ru
%F MZM_1976_19_1_a8
V. M. Kopytov; N. Ya. Medvedev. Linearly ordered groups whose system of convex subgroups is central. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a8/