Approximation of continuous functions by trigonometric polynomials almost everywhere
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the rate of approximation of continuous $2\pi$-periodic functions of class $W^rH[\omega]_C$ by trigonometric polynomials of order $n$ on sets of total measure. We prove that when $r\ge0$, $\omega(\delta)\delta^{-1}\to\infty$ ($\delta\to0$) there exists a function $f\in W^rH[\omega]_C$ such that $\widetilde f\in W^rH[\omega]_C$ and for any sequence $\{t_n\}_{n=1}^\infty$ we have almost everywhere on $[0,2\pi]$ \begin{gather*} \varlimsup_{n\to\infty}|f(x)-t_n(x)|n^r\omega^{-1}(1/n)>C_x>0 \\ \varlimsup_{n\to\infty}|\widetilde f(x)-t_n(x)|n^r\omega^{-1}(1/n)>C_x>0 \end{gather*}
@article{MZM_1976_19_1_a5,
     author = {T. V. Radoslavova},
     title = {Approximation of continuous functions by trigonometric polynomials almost everywhere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a5/}
}
TY  - JOUR
AU  - T. V. Radoslavova
TI  - Approximation of continuous functions by trigonometric polynomials almost everywhere
JO  - Matematičeskie zametki
PY  - 1976
SP  - 49
EP  - 62
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a5/
LA  - ru
ID  - MZM_1976_19_1_a5
ER  - 
%0 Journal Article
%A T. V. Radoslavova
%T Approximation of continuous functions by trigonometric polynomials almost everywhere
%J Matematičeskie zametki
%D 1976
%P 49-62
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a5/
%G ru
%F MZM_1976_19_1_a5
T. V. Radoslavova. Approximation of continuous functions by trigonometric polynomials almost everywhere. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 49-62. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a5/