Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note we will investigate the problem of the one-sided approximation of functions by $n$-dimensional subspaces. In particular, we will find the exact value of the best one-sided approximation of the class $W^rL_1$ ($r=1,2,\dots$) of all periodic functions $f(x)$ of period $2\pi$ for which $f^{(r-1)}(x)$ ($f^{(0)}(x)=f(x)$) is absolutely continuous and $\|f^{(r)}\|_{L_1}\le1$ by periodic spline functions $S_{2n,\mu}$ ($\mu=0,1,\dots$, $n=1,2,\dots$) of period $2\pi$, order $\mu$, and deficiency 1.
@article{MZM_1976_19_1_a1,
     author = {V. G. Doronin and A. A. Ligun},
     title = {Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a1/}
}
TY  - JOUR
AU  - V. G. Doronin
AU  - A. A. Ligun
TI  - Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 11
EP  - 17
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a1/
LA  - ru
ID  - MZM_1976_19_1_a1
ER  - 
%0 Journal Article
%A V. G. Doronin
%A A. A. Ligun
%T Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$
%J Matematičeskie zametki
%D 1976
%P 11-17
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a1/
%G ru
%F MZM_1976_19_1_a1
V. G. Doronin; A. A. Ligun. Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a1/