Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 11-17
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present note we will investigate the problem of the one-sided approximation of functions by $n$-dimensional subspaces. In particular, we will find the exact value of the best one-sided approximation of the class $W^rL_1$ ($r=1,2,\dots$) of all periodic functions $f(x)$ of period $2\pi$ for which $f^{(r-1)}(x)$ ($f^{(0)}(x)=f(x)$) is absolutely continuous and $\|f^{(r)}\|_{L_1}\le1$ by periodic spline functions $S_{2n,\mu}$ ($\mu=0,1,\dots$, $n=1,2,\dots$) of period $2\pi$, order $\mu$, and deficiency 1.
@article{MZM_1976_19_1_a1,
author = {V. G. Doronin and A. A. Ligun},
title = {Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$},
journal = {Matemati\v{c}eskie zametki},
pages = {11--17},
year = {1976},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a1/}
}
V. G. Doronin; A. A. Ligun. Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a1/