Finite groups in which a~Sylow two-subgroup of the centralizer of some involution is of order 16
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 869-876.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the sectional two-rank of a finite group $G$ having no subgroup of index two is at most four if a Sylow two-subgroup of the centralizer of some involution of $G$ is of order 16. This implies the following assertion: If $G$ is a finite simple group whose order is divisible by $2^5$ and the order of the centralizer of some involution of $G$ is not divisible by $2^5$, then $G$ is isomorphic to the Mathieu group $M_{12}$ or the Hall–Janko group $J_2$.
@article{MZM_1975_18_6_a8,
     author = {V. V. Kabanov and A. I. Starostin},
     title = {Finite groups in which {a~Sylow} two-subgroup of the centralizer of some involution is of order 16},
     journal = {Matemati\v{c}eskie zametki},
     pages = {869--876},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a8/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - A. I. Starostin
TI  - Finite groups in which a~Sylow two-subgroup of the centralizer of some involution is of order 16
JO  - Matematičeskie zametki
PY  - 1975
SP  - 869
EP  - 876
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a8/
LA  - ru
ID  - MZM_1975_18_6_a8
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A A. I. Starostin
%T Finite groups in which a~Sylow two-subgroup of the centralizer of some involution is of order 16
%J Matematičeskie zametki
%D 1975
%P 869-876
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a8/
%G ru
%F MZM_1975_18_6_a8
V. V. Kabanov; A. I. Starostin. Finite groups in which a~Sylow two-subgroup of the centralizer of some involution is of order 16. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 869-876. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a8/