Systems of functions which are complete in measure
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 815-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note it is proved that if a complete orthonormal system $\{\varphi_n\}$ in $L_2[0,1]$ contains a subsystem $\{\varphi_{n_k}\}$ of a lacunary order $p>2$, then for some bounded measurable function $h(x)$ the system $\{h(x)\varphi_n(x)\}_{n\ne n_k}$ is complete in $L_2[0,1]$.
@article{MZM_1975_18_6_a2,
     author = {N. B. Pogosyan},
     title = {Systems of functions which are complete in measure},
     journal = {Matemati\v{c}eskie zametki},
     pages = {815--824},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a2/}
}
TY  - JOUR
AU  - N. B. Pogosyan
TI  - Systems of functions which are complete in measure
JO  - Matematičeskie zametki
PY  - 1975
SP  - 815
EP  - 824
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a2/
LA  - ru
ID  - MZM_1975_18_6_a2
ER  - 
%0 Journal Article
%A N. B. Pogosyan
%T Systems of functions which are complete in measure
%J Matematičeskie zametki
%D 1975
%P 815-824
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a2/
%G ru
%F MZM_1975_18_6_a2
N. B. Pogosyan. Systems of functions which are complete in measure. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 815-824. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a2/