Systems of functions which are complete in measure
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 815-824
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note it is proved that if a complete orthonormal system $\{\varphi_n\}$ in $L_2[0,1]$ contains a subsystem $\{\varphi_{n_k}\}$ of a lacunary order $p>2$, then for some bounded measurable function $h(x)$ the system $\{h(x)\varphi_n(x)\}_{n\ne n_k}$ is complete in $L_2[0,1]$.
@article{MZM_1975_18_6_a2,
author = {N. B. Pogosyan},
title = {Systems of functions which are complete in measure},
journal = {Matemati\v{c}eskie zametki},
pages = {815--824},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a2/}
}
N. B. Pogosyan. Systems of functions which are complete in measure. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 815-824. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a2/