The cyclic structure of random permutations
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 929-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha_r$ denote the number of cycles of length $r$ in a random permutation, taking its values with equal probability from among the set $S_n$ of all permutations of length $n$. In this paper we study the limiting behavior of linear combinations of random permutations $\alpha_1,\dots,\alpha_r$ having the form $$ \zeta_{n,r}=C_{r1}\alpha_1+\dots+C_{rr}\alpha_r $$ in the case when $n,r\to\infty$. We shall show that the class of limit distributions for $\zeta_{n,r}$ as $n,r\to\infty$ and $r\ln r/n\to0$ coincides with the class of unbounded divisible distributions. For the random variables $\eta_{n,r}=\alpha_1+2\alpha_2+\dots+r\alpha_r$, equal to the number of elements in the permutation contained in cycles of length not exceeding $r$, we find limit distributions of the form $r\ln r/n\to0$ и $r=\gamma n$, $0\gamma1$.
@article{MZM_1975_18_6_a15,
     author = {V. F. Kolchin and V. P. Chistyakov},
     title = {The cyclic structure of random permutations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {929--938},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a15/}
}
TY  - JOUR
AU  - V. F. Kolchin
AU  - V. P. Chistyakov
TI  - The cyclic structure of random permutations
JO  - Matematičeskie zametki
PY  - 1975
SP  - 929
EP  - 938
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a15/
LA  - ru
ID  - MZM_1975_18_6_a15
ER  - 
%0 Journal Article
%A V. F. Kolchin
%A V. P. Chistyakov
%T The cyclic structure of random permutations
%J Matematičeskie zametki
%D 1975
%P 929-938
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a15/
%G ru
%F MZM_1975_18_6_a15
V. F. Kolchin; V. P. Chistyakov. The cyclic structure of random permutations. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 929-938. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a15/