The cyclic structure of random permutations
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 929-938
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\alpha_r$ denote the number of cycles of length $r$ in a random permutation, taking its values with equal probability from among the set $S_n$ of all permutations of length $n$. In this paper we study the limiting behavior of linear combinations of random permutations $\alpha_1,\dots,\alpha_r$ having the form
$$
\zeta_{n,r}=C_{r1}\alpha_1+\dots+C_{rr}\alpha_r
$$
in the case when $n,r\to\infty$. We shall show that the class of limit distributions for $\zeta_{n,r}$ as $n,r\to\infty$ and $r\ln r/n\to0$ coincides with the class of unbounded divisible distributions. For the random variables $\eta_{n,r}=\alpha_1+2\alpha_2+\dots+r\alpha_r$, equal to the number of elements in the permutation contained in cycles of length not exceeding $r$, we find limit distributions of the form $r\ln r/n\to0$ и $r=\gamma n$, $0\gamma1$.
@article{MZM_1975_18_6_a15,
author = {V. F. Kolchin and V. P. Chistyakov},
title = {The cyclic structure of random permutations},
journal = {Matemati\v{c}eskie zametki},
pages = {929--938},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a15/}
}
V. F. Kolchin; V. P. Chistyakov. The cyclic structure of random permutations. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 929-938. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a15/