Interpolation by polyhedral functions
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 803-814.

Voir la notice de l'article provenant de la source Math-Net.Ru

A polyhedral function $l_{P(\Delta_n)}(f)$. interpolating a function $f$, defined on a polygon $\Phi$, is defined by a set of interpolating nodes $\Delta_n\subset\Phi$ and a partition $P(\Delta_n)$ of the polygon $\Phi$ into triangles with vertices at the points of $\Delta_n$. In this article we will compute for convex moduli of continuity the quatities $$ E(H_\Phi^\omega;P(\Delta_n))=\sup_{f\in H_\Phi^\omega}\|f-l_{P(\Delta_n)}(f)\|, $$ and also give an asymptotic estimate of the quantities $$ E_n(H_\Phi^\omega)=\inf_{\Delta_n}\inf_{P(\Delta_n)}E(H_\Phi^\omega;P(\Delta_n)). $$
@article{MZM_1975_18_6_a1,
     author = {V. F. Babenko and A. A. Ligun},
     title = {Interpolation by polyhedral functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--814},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a1/}
}
TY  - JOUR
AU  - V. F. Babenko
AU  - A. A. Ligun
TI  - Interpolation by polyhedral functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 803
EP  - 814
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a1/
LA  - ru
ID  - MZM_1975_18_6_a1
ER  - 
%0 Journal Article
%A V. F. Babenko
%A A. A. Ligun
%T Interpolation by polyhedral functions
%J Matematičeskie zametki
%D 1975
%P 803-814
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a1/
%G ru
%F MZM_1975_18_6_a1
V. F. Babenko; A. A. Ligun. Interpolation by polyhedral functions. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a1/