Interpolation by polyhedral functions
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 803-814
Voir la notice de l'article provenant de la source Math-Net.Ru
A polyhedral function $l_{P(\Delta_n)}(f)$. interpolating a function $f$, defined on a polygon $\Phi$, is defined by a set of interpolating nodes $\Delta_n\subset\Phi$ and a partition $P(\Delta_n)$ of the polygon $\Phi$ into triangles with vertices at the points of $\Delta_n$. In this article we will compute for convex moduli of continuity the quatities
$$
E(H_\Phi^\omega;P(\Delta_n))=\sup_{f\in H_\Phi^\omega}\|f-l_{P(\Delta_n)}(f)\|,
$$
and also give an asymptotic estimate of the quantities
$$
E_n(H_\Phi^\omega)=\inf_{\Delta_n}\inf_{P(\Delta_n)}E(H_\Phi^\omega;P(\Delta_n)).
$$
@article{MZM_1975_18_6_a1,
author = {V. F. Babenko and A. A. Ligun},
title = {Interpolation by polyhedral functions},
journal = {Matemati\v{c}eskie zametki},
pages = {803--814},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a1/}
}
V. F. Babenko; A. A. Ligun. Interpolation by polyhedral functions. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a1/