The analogue of the law of large numbers for additive functions on sparse sets
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 687-698
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of the Turan'n–Kubilyus inequality is proved for a sufficiently wide class of sequences which contains, in particular, $a_n=f(n)$ and $a_n=f(p_n)$, where $f(n)$ is a polynomial with integral coefficients. This result helps us to obtain integral limit theorems for additive functions on the class of sequences under investigation.
@article{MZM_1975_18_5_a4,
author = {B. V. Levin and N. M. Timofeev},
title = {The analogue of the law of large numbers for additive functions on sparse sets},
journal = {Matemati\v{c}eskie zametki},
pages = {687--698},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a4/}
}
TY - JOUR AU - B. V. Levin AU - N. M. Timofeev TI - The analogue of the law of large numbers for additive functions on sparse sets JO - Matematičeskie zametki PY - 1975 SP - 687 EP - 698 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a4/ LA - ru ID - MZM_1975_18_5_a4 ER -
B. V. Levin; N. M. Timofeev. The analogue of the law of large numbers for additive functions on sparse sets. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 687-698. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a4/